Call for Papers

With advances in remote sensors, sensor networks, and the proliferation of location sensing devices in daily life activities and common business practices, the generation of disparate, dynamic, and geographically distributed spatiotemporal data has exploded in recent years. In addition, significant progress in the ground, air- and space-borne sensor technologies has led to unprecedented access to earth science data, including polar data, for scientists from different disciplines, interested in studying the complementary nature of different parameters. These developments are quickly leading toward a data-rich but information-poor environment. The rate at which geospatial data are being generated clearly exceeds our ability to organize and analyze them to extract patterns critical for understanding in a timely manner a dynamically changing world. Access to such data can help address important challenges such as climate change, sea-level rise, and their impact on communities through transformative spatiotemporal data science and machine learning. This workshop focuses on advances at the intersection of Geospatial AI, Machine Learning, and Spatiotemporal Computing in order to address these scientific and computational challenges and provide innovative and effective solutions.

More specifically, efficient, reliable, and explainable AI, Machine Learning, and Data Mining techniques are needed for extracting useful geoinformation from large heterogeneous, often multi-modal spatiotemporal datasets (e.g., remote sensing, GIS, trajectory, geo-social media). Traditional techniques are ineffective as they do not incorporate the idiosyncrasies of the spatial domain, which include (but are not limited to) spatial autocorrelation, spatial context, and spatial constraints. Extracting useful geoinformation and actionable knowledge from several terabytes of streaming multi-modal data per day also demands the use of modern computing in all its forms (clusters to the cloud). Thus, we invite all researchers and practitioners to participate in this event and share, contribute, and discuss the emerging challenges in Geo-spatial-temporal AI, Machine Learning, and Data Mining.

Topics of interest include, but not limited to, the following:

Important Dates

Paper Submissions

This is an open call-for-papers. We invite both full papers (max 8 pages) describing mature work and short papers (max 4-5 pages) describing work-in-progress or case studies. Only original and high-quality papers formatted using the IEEE 2-column format (Latex Template), including the bibliography and any possible appendices will be considered for reviewing.

Proceedings

All submitted papers will be evaluated by 2-3 program committee members, and accepted papers will be included in an ICDM Workshop Proceedings volume, to be published by IEEE Computer Society Press and will be included in the IEEE Xplore Digital Library.